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Background: Understanding glenohumeral motion in normal and pathologic states requires the precise measurement of
shoulder kinematics. The effect of the plane of arm elevation on glenohumeral translations and rotations remains largely
unknown. The purpose of this study was to measure the three-dimensional glenohumeral translations and rotations during
arm elevation in healthy subjects.

Methods: Eight male subjects performed scaption and forward flexion, and five subjects (three men and two women)
performed abduction, inside a dynamic biplane fluoroscopy system. Bone geometries were extracted from computed
tomography images and used to determine the three-dimensional position and orientation of the humerus and scapula in
individual frames. Descriptive statistics were determined for glenohumeral joint rotations and translations, and linear
regressions were performed to calculate the scapulohumeral rhythm ratio.

Results: The scapulohumeral rhythm ratio was 2.0 ± 0.4:1 for abduction, 1.6 ± 0.5:1 for scaption, and 1.1 ± 0.3:1 for
forward flexion, with the ratio for forward flexion being significantly lower than that for abduction (p = 0.002). Humeral head
excursion was largest in abduction (5.1 ± 1.1 mm) and smallest in scaption (2.4 ± 0.6 mm) (p < 0.001). The direction of
translation, as determined by the linear regression slope, was more inferior during abduction (22.1 ± 1.8 mm/90�)
compared with forward flexion (0.1 ± 10.9 mm/90�) (p = 0.024).

Conclusions: Scapulohumeral rhythm significantly decreased as the plane of arm elevation moved in an anterior arc from
abduction to forward flexion. The amount of physiologic glenohumeral excursion varied significantly with the plane of
elevation, was smallest for scaption, and showed inconsistent patterns across subjects with the exception of consistent
inferior translation during abduction.

Clinical Relevance: When evaluating scapulohumeral kinematics during clinical assessment or for rehabilitation
protocols, it is important to take into account and control the plane of arm elevation. Abnormalities in scapular motion
may be better evaluated during forward flexion of the arm because greater scapular motion is required for this arm
motion.

U
nderstanding glenohumeral motion in normal and
pathologic states requires the precise measurement of
shoulder joint kinematics. Multiple studies have linked

abnormal shoulder joint kinematics with various shoulder dis-
orders including secondary impingement1-4, rotator cuff tears5,6,
glenohumeral osteoarthritis7,8, labral injury, and glenohumeral
instability9,10.

Although shoulder pathology is associated with abnormal
kinematics, there is little detailed information about baseline
values that can provide reference points for the restoration of
normal shoulder kinematics. The most commonly studied pa-
rameter for glenohumeral rotation is scapulohumeral rhythm,
defined as the ratio between glenohumeral elevation and upward
scapulothoracic rotation, which was first reported to be 2:1 by
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Inman et al.11. Two types of abnormalities in scapulohumeral
rhythm have been recognized in shoulders with pathologic
conditions: (1) increased rhythm exacerbating the likelihood of
secondary impingement by biomechanically decreasing the
volume of the subacromial space1,3,12-14, and (2) decreased rhythm
serving as a compensatory method that potentially avoids im-
pingement symptoms and improves rotator cuff function4,6-9,15-17.

There is considerable variation in the magnitude of physi-
ologic glenohumeral translations reported in the literature. Nor-
mal in vivo glenohumeral translations ranging from 0.3 to 2.6 mm
in the superior-inferior direction have been demonstrated by
means of dynamic measurements involving fluoroscopy18,19 and
static measurements involving radiography6,20-23. Normal in vitro
superior shoulder translations of 2.0 to 5.7 mm have been re-
ported24,25. Increased mean in vivo glenohumeral translations of
approximately 1.5 mm in patients with symptomatic rotator cuff
tears6, impingement syndrome21, and biceps tenodesis23 have been
reported, with individual increases of up to 6 to 8.9 mm6,23.

In recent years, biplane fluoroscopy has emerged as a highly
accurate and precise method to measure in vivo three-dimensional
kinematics; this method allows measurement of glenohumeral
joint motion to within fractions of a millimeter26,27. Clinically,
measurement of the full range of arm elevation is important be-
cause arm elevation is a common motion during activities of daily
living and athletic activities. It is uncommon for shoulder kine-
matics in fluoroscopic studies to be reported in all three of the
standard planes of arm elevation: abduction (coronal plane ele-
vation), scaption (scapular plane elevation), and forward flexion
(sagittal plane elevation). As a result, the relative effect of the plane
of elevation on glenohumeral translation and scapulohumeral
rhythm remains unknown. Our purpose was to measure three-
dimensional glenohumeral translations and rotations during ab-
duction, scaption, and forward flexion in healthy subjects. Our
hypothesis was that glenohumeral translations and scapulohu-
meral rhythm would change with the plane of elevation.

Materials and Methods
Subjects

All participants provided written consent and the study was approved by the
institutional review board of the Vail Valley Medical Center. Eight male

subjects (Group 1) without a shoulder abnormality performed scaption and
forward flexion. These subjects had a mean age (and standard deviation) of 29 ± 6
years, height of 1.84 ± 0.05 m, weight of 87.4 ± 7.8 kg, and body mass index of
25.7 ± 2.2 kg/m2. In addition, three male and two female subjects (Group 2)
performed abduction. These subjects had a mean age of 41 ± 14 years, height of
1.77 ± 0.09 m, weight of 86.5 ± 22.9 kg, and body mass index of 27.2 ± 5.0 kg/m2.
The subjects in Group 2 had undergone an isolated biceps tenodesis procedure on
their contralateral shoulder. Data for Group 2 were originally collected for a
previous study comparing glenohumeral translations between the healthy and
tenodesed shoulders of these subjects

28
. Only the healthy shoulder was analyzed

in the present study. Thus, a total of eight right shoulders (all dominant) and five
left shoulders (all nondominant) were analyzed in the present study. All subjects
underwent a detailed shoulder examination by a shoulder specialist to exclude any
pathologic condition in the shoulder of interest.

Instrumentation
A custom biplane fluoroscopy system was constructed from two synchronized and
modified BV Pulsera C-arms (Philips Medical Systems, Best, The Netherlands)

with 30-cm image intensifiers and was used to measure the three-dimensional
position and orientation of the humerus and the scapula. The C-arms were
modified under appropriate Food and Drug Administration guidelines and Col-
orado radiation safety regulations. Motions of the shoulder were performed at a
distance of approximately 25 cm from the image intensifiers. For Group 1, data
were collected at 30 Hz with the x-ray generators in a pulsed fluoroscopy mode
(8 milliseconds, 60 mA, approximately 60 kV) and were subsequently analyzed at
10 Hz (i.e., every third frame). For Group 2, following a system upgrade, data were
collected at 100 Hz with the x-ray generators operating in a continuous fluoros-
copy mode (12 mA, approximately 60 kV) and were then analyzed at 12.5 Hz (i.e.,
every eighth frame) because the movements were sufficiently slow and the analysis
was labor-intensive. Image distortion was corrected by imaging a square grid and
then a calibration cube to determine the x-ray focus positions and the relative
positioning and orientation of the two fluoroscopes

29
.

The biplane fluoroscopy system was validated with use of standard vali-
dation techniques

26,30,31
. Kinematic data for four cadaveric shoulders with the soft

tissues intact were collected during scaption to simulate the in vivo measure-
ments. These specimens were placed inside the biplane fluoroscopy system in a
comparable position and orientation and were elevated from neutral to maxi-
mum elevation over a two-second period with use of a pulley system. The data
were analyzed in the same manner as described below for the in vivo study. In
addition, five tantalum beads (1.6 mm) were inserted into each scapula and each
humerus to provide reference measurements. Bias and precision were calculated,
in thirty frames

32
for each specimen, as the mean and standard deviation of the

difference in the measured scapular and humeral positions and rotations relative
to the positions and rotations determined by tracking of the beads. The mean
biases and precisions were 0.2 ± 0.5 mm, 0.3 ± 0.3 mm, and 0.3 ± 0.4 mm
for measurements of anterior-posterior, superior-inferior, and distraction-
compression translations, respectively. The mean biases and precisions were
0.1� ± 0.8�, 0.2� ± 0.2�, and 1.7� ± 1.2� for measurements of the glenohumeral
plane of elevation, elevation angle, and internal-external rotation, respectively. As
we had expected because of the increased amount of soft tissue, these values were
generally slightly higher than those reported in a previous study of the knee using
our system (0.2 ± 0.3 mm, 20.1 ± 0.1 mm, and 20.05 ± 0.1 mm for the three
translations and 0.1� ± 0.1�, 0.3� ± 0.2�, 0.1� ± 0.3� for the three rotations)

33
, with

the exception of glenohumeral internal-external rotation, which was more difficult
to measure in the shoulder because of the cylindrical geometry of the humerus.
The values were consistent with similar studies using biplane fluoroscopy

26,27,34,35
.

During the in vivo activities, the motion of the subject’s arm and torso
was recorded at 120 Hz with use of an optical motion analysis system (Motion
Analysis, Santa Rosa, California) to track how the exercises were being per-
formed at a global level; this provided a reference for the local biplane fluo-
roscopy data. Thirteen retroreflective markers were placed on the subject’s
trunk, arm, and forearm. However, only the four markers on the left and the
right acromion and on the medial and the lateral epicondyle (elbow joint
center) were used to calculate the plane of arm elevation relative to the trunk for
the frame in which the arm was elevated to 90�. Data collection by the motion
analysis system was synchronized with that of the biplane fluoroscopy system.

Procedures
A high-resolution computed tomography (CT) scan of the subject’s shoulder
was obtained (Aquilion 64, Toshiba America Medical Systems, Tustin, Cal-
ifornia). The CT scan was used for reconstruction of the three-dimensional
geometry of the scapula and the upper one-third of the humerus. The sequence
of axial images from the scan (approximate voxel size, 0.5 · 0.7 · 0.7 mm) was
obtained at 120 kVp and 200 mA with sharp-bone CT reconstruction.

The subjects in Group 1 performed two standard range-of-motion
exercises over their full range of motion: (1) scaption (motion in the scapular
plane, 30� to 40� anterior relative to the coronal plane), and (2) forward flexion
(motion in the sagittal plane). The subjects were seated with their back straight
and their arm hanging by their side. They then elevated their arm over their
head as far as possible at an even pace over the course of two seconds, aided by
a metronome, while keeping their elbow fully extended with the thumb pointed
upwards. The subjects in Group 2 performed abduction (motion in the coronal
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plane) in a similar fashion. All subjects performed practice runs to become
acquainted with the motions. To minimize radiation exposure to the subjects, a
single trial was recorded for each motion.

Data Reduction
Data processing consisted of four steps as described previously

28,36
: recon-

struction of the three-dimensional bone geometry of the humerus and scapula
from the CT data, coordinate system assignment and geometric transforma-
tion, determination of bone positions and orientations in the biplane fluo-
roscopy data, and postprocessing to extract the shoulder kinematics.

The three-dimensional geometries of the scapula and the humerus were
extracted from the CT data (Mimics, Materialise, Plymouth, Michigan). Coor-
dinate systems and three-dimensional glenohumeral rotations were determined
by a method that followed the International Society of Biomechanics standard

37

as closely as possible. In summary, the lateral axis of the scapula was directed from
the trigonum spinae scapulae to the angulus acromialis (Fig. 1), and the anterior
axis was perpendicular to the plane of the scapula. The lateral axis of the humerus
was directed parallel to a line connecting the medial and lateral epicondyles,
which was estimated on the basis of the bicipital groove

38
. The superior axis of

the humerus was taken as the center line through the canal of the shaft. In
addition, a more clinically relevant coordinate system was created to quantify
glenohumeral translations. The humeral head center was determined by fitting a
sphere to the articular surface of the humeral head (Fig. 2). A glenoid coordinate
system was created on the basis of the most superior, inferior, and anterior points
on the glenoid rim (Fig. 2). The glenoid center was assumed to lie midway
between the most superior and inferior points on the glenoid rim.

Determination of bone position and orientation from the biplane fluo-
roscopy data was performed for each analyzed frame with use of Model-Based
RSA software (Medis Specials, Leiden, The Netherlands)

31,39
. Contours were

automatically extracted from the biplane fluoroscopy images and were man-
ually assigned to the humerus and the scapula. Subsequently, a fully automatic,
six-degree-of-freedom contour matching optimization algorithm determined
the three-dimensional bone position and orientation. This algorithm optimally
matched the detected contours with the projected contours from the imported
bone geometries (Fig. 3).

The glenohumeral rotations and translations during the motions were
calculated from the optimized bone positions and orientations. Three-dimensional
glenohumeral joint rotations were described (using YXY Euler angles

37
) as (1) the

Fig. 1 Fig. 2

Fig. 1 Scapular coordinatesystemand glenohumeral plane of elevation represented in a superior view, with arrowsdepicting the directionof the anterior and

posterior planes. The neutral glenohumeral plane of elevation is determined by the lateral scapular axis (Z), defined as a line running through the angulus

acromialis (junction of the posterior and lateral borders of the acromion) and the trigonum spinae scapulae (root of the spine of the scapula). Fig. 2

Thehumeral headcenter (left) is determined by fittinga sphere to the articular surfaceof the humeral head. Theglenoid coordinatesystem (right) is based on

the most superior, inferior, and anterior points on the computed tomography reconstruction.

Fig. 3

Matching of bone geometries for an abduction

frame. The algorithm matches the detected bone

contours (yellow) with the projected bone contours

(black).
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instantaneous plane of elevation (in front of or behind the scapular plane) about
the superior axis of the scapula, (2) the humeral elevation about the anteriorly
directed axis of the humerus, and (3) the internal-external axial rotation about
the superior axis of the humerus (Fig. 4). Glenohumeral translation was
defined as the superior-inferior and anterior-posterior motion of the hu-
meral head center relative to the glenoid coordinate system. Lastly, the arm
elevation angle was defined as the angle between the humeral shaft axis and
vertical.

For each motion performed by the subject, the time series of the gleno-
humeral rotations and translations was filtered at 2 Hz. The glenohumeral ro-
tation and translation curves for each motion were analyzed from 20� to 150� of
arm elevation. A linear regression analysis was performed to determine the slope
(change in glenohumeral elevation/change in arm elevation) and the intercept for
the relationship between glenohumeral elevation and arm elevation angle. The
slope quantifies how much glenohumeral elevation occurs per degree of arm
elevation. Given that arm elevation equals the sum of glenohumeral elevation and
upward scapulothoracic rotation (Fig. 4), upward scapulothoracic rotation was
then calculated by subtracting the glenohumeral elevation from the arm elevation.
Subsequently, scapulohumeral rhythm was determined by calculating the ratio of
glenohumeral elevation to upward scapulothoracic rotation

11
. The mean, stan-

dard deviation, maximum, minimum, and total excursion (maximum minus
minimum) were calculated for each motion for each translation direction. In
addition, linear regression quantified the slope and intercept of the glenohumeral
translations as a function of arm elevation. The slope was expressed as the amount
of translation per 90� of arm elevation. Lastly, the rotation and translation data
as a function of arm elevation were resampled in 10� intervals from 20� to 150� of
arm elevation.

Statistical Methods
A one-way analysis of variance (ANOVA) with the arm plane of elevation
(abduction, scaption, or forward flexion) as the independent variable was
performed to analyze the linear regression results, scapulohumeral rhythm,
glenohumeral plane of elevation and rotation, arm plane of elevation, and
mean, maximum, minimum, and excursion of the anterior-posterior and
superior-inferior glenohumeral positions. A p value of 0.05 was considered
significant. When significant ANOVA results were found, Bonferroni-corrected
post hoc comparisons were performed to analyze the specific differences be-
tween the elevation planes. A two-way ANOVA with the elevation plane (ab-
duction, scaption, forward flexion) and arm elevation angle (20� to 150� in 10�
increments) as the independent variables was performed to statistically analyze the
glenohumeral elevation angle as well as anterior-posterior and superior-inferior
glenohumeral translations. A one-sample t test was used to determine whether
regression slope values were significantly different from zero (at the p < 0.05 level).

Source of Funding
This work was supported by the Steadman Philippon Research Institute and the
Gumbo Foundation. In addition, the Minnesota Medical Foundation supported
the Summer Research Internship position of one of the authors. Neither the
Gumbo Foundation nor any other corporate sponsorship to our institution
played a role in the investigation.

Results

The means for the three glenohumeral rotations as a func-
tion of arm elevation angle are shown in Figure 5. The

images of the forward flexion trial of one subject were under-
exposed and the trial had to be excluded from the results.
The mean slopes of the glenohumeral elevation regression
for the abduction, scaption, and forward flexion curves were
0.66 ± 0.05, 0.60 ± 0.06, and 0.52 ± 0.07, respectively, with the
slope for coronal plane abduction being significantly greater
than that for forward flexion (p = 0.001) (see Appendix).
The corresponding scapulohumeral rhythm ratios were 2.0 ±
0.4:1 for abduction, 1.6 ± 0.5:1 for scaption, and 1.1 ± 0.3:1
for forward flexion, with the rhythm for abduction being sig-
nificantly greater than that for forward flexion (p = 0.002).
Overall, the glenohumeral contribution to arm elevation de-
creased as the plane of arm elevation moved anteriorly from the
coronal plane (abduction) toward the sagittal plane (forward
flexion).

The data demonstrated that the glenohumeral plane of
elevation for abduction at 90� of arm elevation, 211.8� ± 4.7�,
was similar to that for scaption, 211.6� ± 4.9�, with both planes
lying slightly posterior to the plane of the scapula (see Appen-
dix). These motions were also similar globally, with abduction
performed at an arm elevation plane of 16.8� ± 7.9� and scaption
at 30.1� ± 8.2�. Forward flexion was significantly anterior
compared with the other two motions, with a glenohumeral
elevation plane of 42.4� ± 12.2� and an arm elevation plane
of 81.2� ± 14.7� (p < 0.001). The results for glenohumeral
internal rotation mirrored those for the plane of elevation, with
forward flexion demonstrating significantly more internal ro-
tation (37.2� ± 15.0�) compared with scaption (19.0� ± 11.9�)
and abduction (19.5� ± 9.1�) (p = 0.032) (see Appendix).

The group mean and standard deviation of the descriptive
statistics for anterior-posterior glenohumeral translation for all
three motions are presented in the Appendix and depicted as a

Fig. 4

The scapular and humeral coordinate systems as well as glenohumeral

elevation, glenohumeral internal-external rotation, and upward scapular

rotationare indicated in aposterior view of a right shoulder. Theorigin of the

humeral coordinate system is located in the center of the humeral head

(dotted circle), and the long axis (Y) is determined by calculating the center

line of the proximal aspect of the shaft (dotted line).
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function of the arm elevation angle in Figure 6. On average, the
humeral head was positioned 4 to 5 mm posterior to the midline
of the glenoid for all motions. The glenohumeral excursions
(total amount of translation) for abduction, scaption, and for-
ward flexion for the group were 1.4 mm, 0.7 mm, and 2.4 mm,
respectively, and the between-subject variabilities (i.e., standard
deviation averaged across all arm elevation angles) were 2.1 mm,
1.0 mm, and 1.9 mm. When the parameters extracted from the
individual curves were analyzed, the minimum (most posterior)
position was significantly more posterior for abduction (27.7 ±
1.2) than for scaption (25.6 ± 1.0 mm) (p = 0.025). In addition,
the excursions for all three motions were significantly different
from each other (p < 0.001), with excursion occurring during
abduction (5.1 ± 1.1 mm) being larger than that during flexion
(3.6 ± 1.1 mm), which in turn was larger than that during scaption
(2.4 ± 0.6 mm). No other significant differences were found.

The group mean and standard deviation of each descrip-
tive statistic for superior-inferior position for each motion are
presented in the Appendix, and values are depicted as a function
of arm elevation angle in Figure 6. To demonstrate the between-
subject variability, the descriptive statistics for the individual
subjects and the group mean and standard deviation for the
superior-inferior glenohumeral position for scaption are also
presented in the Appendix. On average, the humeral head was

positioned 1 to 2 mm superior to the midline of the glenoid for all
motions. The glenohumeral excursions for the group for abduc-
tion, scaption, and forward flexion were 3.7 mm, 0.9 mm, and
1.3 mm, respectively, and the between-subject variabilities were
2.3 mm, 1.7 mm, and 1.4 mm. The slope of the linear regression
curve indicated that translation was significantly more inferiorly
directed for abduction (22.1 ± 1.8 mm/90�) compared with
forward flexion (0.1 ± 0.9 mm/90�) (p = 0.024) and approached
being different from zero (p = 0.057). In addition, the two-way
ANOVA showed a significant difference between abduction and
scaption (p = 0.017), with the glenohumeral position during ab-
duction being significantly more superior compared with scap-
tion. No other significant differences were found.

Discussion

This study indicated that changes in the plane of arm ele-
vation affected glenohumeral kinematics in multiple ways,

including in glenohumeral translations, glenohumeral eleva-
tion, and scapulohumeral rhythm, which confirmed our hy-
pothesis. The scapulohumeral rhythm ratio was significantly
smaller for forward flexion than for abduction. Therefore,
forward flexion was associated with a greater scapular contri-
bution via upward rotation and relatively less glenohumeral
elevation compared with abduction. This difference in scapu-
lohumeral rhythm suggests that scapular motion abnormalities
may be better examined in forward flexion because any ab-
normalities may be more apparent. This finding supports a
similar recommendation in a recent clinical study40.

The glenohumeral translations indicated that, on aver-
age, the humeral head was positioned posteriorly and superi-
orly on the glenoid. During shoulder motion, the total humeral

Fig. 5

Mean glenohumeral plane of elevation, elevation angle, and internal ro-

tation as a function of arm elevation angle in the three planes of motion

(forward flexion, scaption, and abduction).

Fig. 6

Mean anterior-posterior and mean superior-inferior position of the humeral

head relative to the glenoid as a function of arm elevation angle in the three

planes of motion.
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head excursion was greatest in abduction and smallest in
scaption. Group mean excursion was always less than the
between-subject variability, with the exception of superior-
inferior excursion during abduction (3.7 mm compared with
2.3 mm). The individual excursions, and especially that for
scaption, were relatively small compared with the mean male
glenoid size of 27.4 · 37.5 mm34. The excursions equaled
18.6%, 8.8%, and 13.1% of the glenoid size for abduction,
scaption, and forward flexion, respectively, in the anterior-
posterior direction and 11.2%, 6.7%, 8.0% in the superior-inferior
direction. The directions of the translations, as determined by
the linear regression slope, were inconsistent among subjects
and were not in a specific direction, with the exception of
inferior translation during abduction. The data clearly showed
that the plane of arm elevation needs to be controlled in research
and clinical settings to accurately assess and clinically follow
scapulohumeral rhythm and glenohumeral translations in pa-
tients with shoulder disorders.

Understanding normal scapulohumeral rhythm is key to
identifying and treating clinical shoulder disorders because ab-
normal shoulder kinematics are routinely measured during clinical
examinations and in biomechanical studies involving subacromial
impingement, rotator cuff tears, adhesive capsulitis, glenohumeral
osteoarthritis, and glenohumeral instability1-10,13,14,23,41-44. In 1944,
Inman et al.11 first assigned a value to scapulohumeral rhythm,
reporting that scapulohumeral rhythm in healthy subjects per-
forming abduction occurred in a 2:1 ratio. However, ratios ranging
from 1.25:1 to 5.3:1 have been subsequently reported with
the advent of newer and more accurate measurement tech-
niques4,5,12,42,45-52. Despite these findings, Inman’s ratio of 2:1 is
still commonly used in educational and clinical settings and
was further supported by the present study (which found a
ratio of 2.0 ± 0.4:1 for abduction).

Clinically, these results provide valuable baseline data on
both mean translation amplitude and between-subject variability
for future studies investigating glenohumeral translations in
other patient populations such as those with various forms of
impingement, rotator cuff disease, instability, and arthritis. In-
deed, one of the theories regarding glenohumeral arthritis is that
the etiology involves an increase in shear force that cannot be
tolerated by the articular cartilage53. The results of the present
study demonstrated that, in a healthy glenohumeral joint, only
small excursions of 2.5 mm occur in both principal directions
during scaption over the full range of shoulder motion. There-
fore, it is unlikely that shoulder translations in healthy shoulders
are measureable with use of palpation or skin-based measure-
ment methods. Moreover, the standard deviations for gleno-
humeral position were greater than the measured excursion
amplitudes, indicating that the motion-related translations were
smaller than the variations among subjects and can therefore only
be measured with advanced imaging techniques. Future studies
of patient populations diagnosed with instability and suspected
of having increased glenohumeral translations will place the
magnitude of clinically relevant translations in perspective.

These results also provide valuable baseline data for com-
puter simulations and in vitro experimentation. In computer

modeling, the glenohumeral joint is commonly modeled as a
ball and socket joint54-56. We found that this approximation was
accurate to within 2.5 mm for scaption and 5.1 mm for ab-
duction, or within 9% and 19% of the mean glenoid dimen-
sion, respectively. Therefore, the ball and socket assumption
may be reasonable (with an error of <10%) for the shoulders of
healthy subjects during scaption, but it may not be acceptable
for other motions or for pathologic conditions. It is unclear
what effect this may have on muscular lines of action and
moment arms, and developers of computer models need to be
mindful when making the assumption of a ball and socket joint
for arbitrary motions. The results of the present study also
indicated that glenohumeral translations previously reported
for some in vitro studies (e.g., 5.7 mm superior translation25)
may be excessive and should be treated with caution, as their
magnitude is suggestive of loading that is improper for simu-
lating in vivo motion. Therefore, the data from the present
study provide a baseline value to be met by in vitro studies that
are aimed at replicating physiologic loading of the joint.

The present study has several limitations. First, the scapu-
lohumeral rhythm results were derived solely from the glenohu-
meral component during arm elevation. Scapulothoracic rotation
was not measured directly but was assumed to equal the difference
between total arm elevation and glenohumeral elevation. Although
this is a simplification, we believe the result to represent a valid
estimate for comparing the different motions. Similar methods
relying on these relationships have been used in previous stud-
ies45,46,49,51,52. Second, abduction did not occur in a purely coronal
plane. Even though clinicians confirmed visually during data col-
lection that subjects appeared to be performing the abduction
movement appropriately, kinematic results indicated the arm
motion to be 17� anterior to the coronal plane. The fact that
abduction actually occurred halfway between the scapular plane
and the true coronal plane could potentially explain the similarities
between our abduction and scaption rotation results. However,
significant differences between these motions were still found for
the glenohumeral translations. We suggest that future studies use a
guide to ensure that motions are performed in the proper planes.

Third, the biplane fluoroscopy methodology used in the
study results in radiation exposure. However, fluoroscopy is the
most accurate measurement technique to date, and it allows
the greatest freedom of movement and the highest frame rates of
any technique. Care was taken to keep the amount of radiation as
low as possible. This was the reason that only one trial was ob-
tained for each motion. In addition, the lowest technique factors
that still allowed sufficient image quality for motion tracking were
used. Unfortunately, this resulted in the exclusion of the forward
flexion trial of one subject because of underexposure. Lastly, our
subject population consisted of two distinct groups, which was
not ideal. The data represented the combination of two originally
distinct studies into one. The data could have been improved by
having an entirely new group of subjects perform all three of the
motions. However, this would have exposed additional subjects to
radiation. Therefore, existing data were used to estimate the mean
values for normal, healthy shoulders, and we believe that both of
the included groups accurately represented this population.
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In conclusion, this study helped to characterize the dy-
namic relationship between glenohumeral rotation and trans-
lation in healthy individuals during motion in three arm
elevation planes. There were significant differences in scapu-
lohumeral rhythm between abduction and forward flexion.
Therefore, when evaluating detailed scapulohumeral rhythm
kinematics during clinical assessment of shoulder disorders, it
is important to take into account and control the plane of arm
elevation. The data suggest that evaluation of forward flexion
may represent a better method for assessing scapular abnor-
malities than scaption or coronal plane abduction.

Appendix
Tables showing the descriptive statistics for glenohumeral
rotation, anterior-posterior and superior-inferior gleno-

humeral position, and between-subject variability in superior-
inferior position during scaption are available with the online
version of this article as a data supplement at jbjs.org. n
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